Minimal Spanning Trees

Lecture 32 Sections 7.1 - 7.3

Robb T. Koether

Hampden-Sydney College

Mon, Nov 19, 2018

- Networks and Trees
- Minimal Spanning Trees
- Kruskal's Algorithm
- 4 Examples
- 6 Assignment

Outline

- Networks and Trees
- 2 Minimal Spanning Trees
- Kruskal's Algorithm
- 4 Examples
- 5 Assignment

Networks and Trees

Definition (Network)

A network is a connected graph.

Networks and Trees

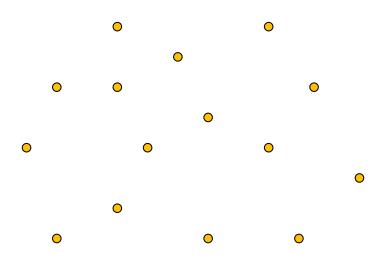
Definition (Network)

A network is a connected graph.

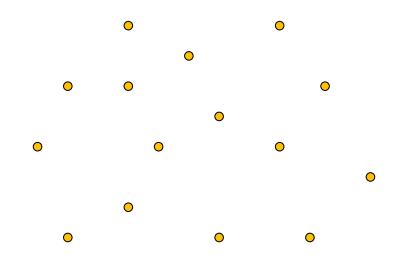
Definition (Tree)

A tree is a network that contains no circuits.

- If T is a tree with N vertices, then
 - T has exactly N − 1 edges.
 - If any edge of T is removed, then the resulting graph is not connected.



Add edges to connect the graph without making a circuit.



Erase edges to remove circuits without disconnecting the graph.

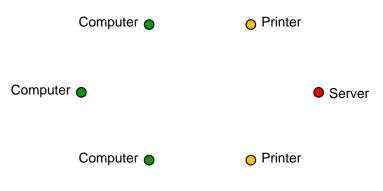
Theorem

A graph G with N vertices is a tree if any two of the following three properties hold.

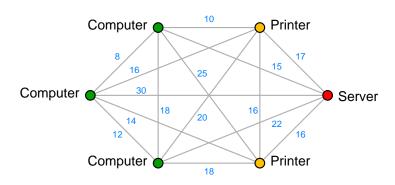
- (1) T has exactly N-1 edges.
- (2) T is connected.
- (3) T contains no circuits.

Outline

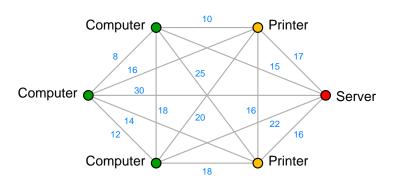
- Networks and Trees
- Minimal Spanning Trees
- Kruskal's Algorithm
- 4 Examples
- 5 Assignment



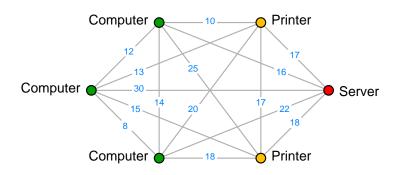
Suppose we want to connect devices in a network.



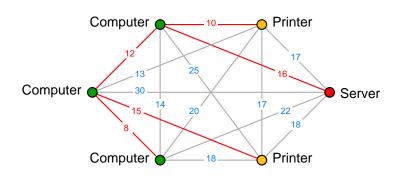
We want all the devices connected to each other.



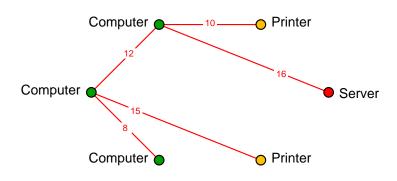
But no two devices need to be connected by more than a single path.



Given the distances, which lines do we keep?



The best choice is the tree of minimal total length



The total length of this tree is 61

Minimal Spanning Trees

Definition (Spanning Tree)

Given a graph G, a spanning tree of G is a subgraph T that is a tree and includes all the vertices of G.

Minimal Spanning Trees

Definition (Spanning Tree)

Given a graph G, a spanning tree of G is a subgraph T that is a tree and includes all the vertices of G.

Definition (Minimal Spanning Tree)

Given a weighted graph G, a minimal spanning tree of G is a spanning tree T that has the smallest total weight of all possible spanning trees of G.

Outline

- Networks and Trees
- Minimal Spanning Trees
- Kruskal's Algorithm
- 4 Examples
- 6 Assignment

Kruskal's Algorithm

Kruskal's Algorithm

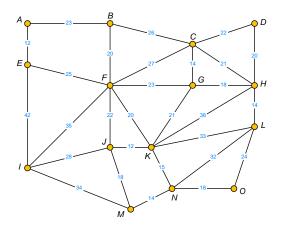
Given a graph *G* of *N* vertices, we may construct a minimal spanning tree as follows.

- (1) Include all the vertices of G in T.
- (2) Add to T the edge of minimal weight.
- (3) Repeatedly add to *T* edges of minimal weight from among the remaining edges while being careful not to create a circuit.
- (4) Once we have added N-1 edges, T is a minimal spanning tree of G.

Outline

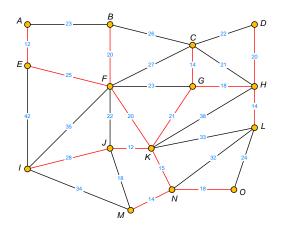
- Networks and Trees
- Minimal Spanning Trees
- Kruskal's Algorithm
- 4 Examples
- 5 Assignment

Power Grid



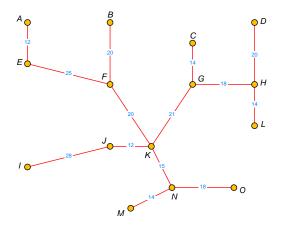
Given the possible links, find the minimal spanning tree.

Power Grid



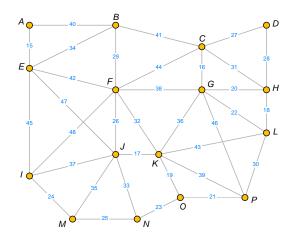
The minimal spanning tree.

Power Grid



Total weight is 251.

Practice



Find the minimal spanning tree.

Outline

- Networks and Trees
- Minimal Spanning Trees
- Kruskal's Algorithm
- 4 Examples
- 5 Assignment

Assignment

Assignment

• Chapter 7 Exercises 1, 3, 7, 35, 37, 39, 40, 45.